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LETTER TO THE EDITOR 

The Born-Oppenheimer electric gauge force is repulsive 
near degeneracies 

M V Berry and R Lim 
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 lTL, U K  

Received 23 April 1990 

Abstract. The Born-Oppenheimer approximation implies gauge potentials of electric and 
magnetic type in the Hamiltonian governing the slow part of the system. Here we demon- 
strate that the electric gauge potential is repulsive near points in the space of slow parameters 
at which energies of the fast system are degenerate. The repulsion is an inverse-cube force. 

It has recently been appreciated [ 1-31 that conventional Born-Oppenheimer theory 
leads to the appearance of gauge potentials of electric and magnetic type in the effective 
Hamiltonian for the slow system, in addition to the familiar potential-energy surface 
from the fast eigenvalues. Here we describe a curious feature of the electric gauge 
force. This has been mentioned before [4], but now we give a more detailed account. 

The fast system is described by a set of dynamical variables (coordinates, momenta, 
spins) represented by i and the slow system by coordinates X and conjugate momentum 
operators @. We may cast the Hamiltonian of the entire system in the general form 

(1) 

where fif is the Hamiltonian for the fast system and includes the potential energy of 
interaction with and within the slow part. The first term represents the kinetic energy 
of the slow system, with Q, being an inverse mass tensor. In the simplest case where 
the slow particles all have the same mass M ,  Q,, is clearly the identity matrix of 
appropriate size, divided by M. When the particles have different masses, Q,, is diagonal 
in Cartesian coordinates. Obviously Q,, is positive definite; this will be crucial. 

Let the fast system be in the nth eigenstate I n ( X ) )  of A, with energy E , ( X ) .  In  
the Born-Oppenheimer approximation we take the state of the entire system to be of 
the separable form l n ( X ) ) P T ( X ) ,  where q y ( X )  is the wavefunction of the slow system, 
in which (here and hereafter) we suppress an obvious n dependence. The effective 
Hamiltonian governing qyr is A,,,-=(nIfiln). It is then easy to show, using I;,= 
- iha/aX,  = -iha,, that 

A = 1 QIJ@,e + fif(i; X )  
'J 

where the magnetic vector and electric scalar gauge potentials A, and @ are 

A , ( X )  = ih(nld,n) (3) 
and 
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(gv is in fact the quantum metric tensor [4,5]). In a cycle of the slow parameters X, 
the integral of the vector potential gives the familiar geometric phase. 

We now show that the pseudo-electric gauge potential Q, is inverse square and 
repulsive close to points in the space of slow parameters that correspond to degeneracies 
in E,(X), provided the inverse mass tensor has positive eigenvalues. Near a degeneracy 
it is the adjacent states which dominate gij. To see why, rewrite (5) in the form 

using the resolution of the identity. Since 

(obtained by differentiating the eigenequation), it is the state Im = n + 1) or Im = n - 1) 
which becomes important close to a degeneracy. 

Consider therefore the simplest case of a two-state fast system, and take (without 
essential loss of generality) fif = U * X where U is a vector whose components are the 
Pauli spin matrices and X = (Xi ,  X,, X , )  is a position vector in the three-dimensional 
space of relevant slow parameters. For convenience we shall use Cartesian coordinates. 

We now need g, for this model. Recall that the In) represent eigenstates of fi,. 
The operator has two eigenstates which we denote I+) and I-), satisfying fi,./*) = *XI*) 
with X = 1x1. The degeneracy is thus at the origin of X space. Differentiating this 
eigenequation with respect to X I  leads to 

( U .  x ) ld ,* )+(o .  e,)l*)= * [ ( e l .  x)l*)+xlaf*>l (8) 

where x =  X / X  = (x,, x2, x,) and e, is the unit vector in the direction of the ith 
coordinate. We thus have 

( F ~ u .  e,(*) = *tZX(~(d,k).  (9) 
If the fast system is in the I+) state, we have, from (6), 

1 
4 x  

gij = Re[(di+l-)(-ldj+)] =y Re[(-[@ eil+)(+la - ej1--)]. 

The trick is to go now to rotated axes such that the x3 direction coincides with X.  
Then since only the off-diagonal elements of the Pauli matrices appear in (lo), we 
need only look at contributions from and u2. It is now a straightforward exercise 
to show that the RHS of (10) equals 

which, upon reverting to the original coordinate axes, gives 

1 
8.. rJ = - [ e . . e . - ( e i . x ) ( e j . x ) ] .  4 x 2  J (12) 

If the fast system is in the I-) state, g, is given by the same expression (there is no 
minus sign). 
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g, has one zero eigenvalue and one doubly-degenerate eigenvalue and so 
diagonalises to 

In this frame only the diagonal terms of Q,, contribute to the summation in (4). 
Let Pv be an orthogonal rotation matrix needed to get from the Cartesian frame in 
which Q is diagonal to one which diagonalises g,. In the latter frame, the diagonal 
terms of Q are easily shown to be of the form =Z,q,Pfl, where the q, are the 
eigenvalues of Q. Thus, because the inverse mass tensor has only positive eigenvalues, 
its diagonal elements will be positive in any rotated coordinate system, and (4) is 
positive. So we have an electric gauge potential that, in the vicinity of degeneracies in 
E,, ( X ) ,  is inverse square in the distance from the degeneracy and also positive. Therefore 
there is an inverse-cube repulsive gauge force centred on the degeneracy, as claimed. 

In applications of Born-Oppenheimer theory (e.g. to molecules), it is common to 
treat the slow system semiclassically as well as adiabatically, because this system is 
heavy as well as slow. Then the h-dependence of the gauge potentials becomes 
important. The magnetic potential A, is proportional to h and so is comparable with 
energy spacings of one-dimensional (e.g. WKB) subsequences of vibronic levels. There- 
fore it gives appreciable contributions to such levels [ 6 ] .  

The electric potential 0 is proportional to h2  and so gives negligible semiclassical 
contributions to one-dimensional subsequences. It will, however, have two other effects. 
First, it will give appreciable contributions to level sequences corresponding to chaotic 
nuclear motion, because the spacing is now h N  where N,  the number of relevant 
freedoms, is at least 2. Second, because of the result demonstrated here, 0 cannot be 
ignored near a degeneracy, because of the singularity there. Its effect will be to improve 
the adiabatic approximation by repelling the slow system from degeneracies and so 
reducing the probability of non-adiabatic transitions between fast states In). 
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